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Cavity size distribution in lattice liquids
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We investigate a lattice model for liquids. The average cavity size dependence on the molecular size is
analyzed. Our results confirm the idea that larger molecules lead to greater average cavity size. This
feature of liquids has been recently interpreted as the reason for solubility differences between water and
other liquids. We also study the percolation problem for empty sites. Critical densities and the critical
exponents of correlation length and average cavity size are estimated.
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The study of the assembly of structures in solvents is
relevant to understanding processes such as the forma-
tion of micelles and membranes and the folding or associ-
ation of proteins. Among the noncovalent interactions
responsible for these processes, the so-called ‘““hydropho-
bic” ones are predominant.

Hydrocarbon molecules are more soluble in organic
solvents than in water, i.e., the chemical potential of the
solution is greater in the case of water and the difference
of chemical potentials is proportional to the area of hy-
drophobic solute in contact with water. It is commonly
accepted [1-3] that the structure of the aqueous medium
surrounding the hydrocarbon molecule is altered by in-
terruption of the lattice of hydrogen bonds between water
molecules. It is supposed that water molecules form a
cagelike structure around the solute. However, recent
studies on the solubilities of inert gases [4—6] and organic
compounds [7] in liquids have led to the suggestion that
the characteristic differences between nonaqueous sol-
vents and liquid water are not due to the hydrogen bond-
ing organization in water. Instead, those differences
would be mainly due to the comparatively small size of
the water molecule, leading to cavities of smaller size in
water, which would be finally reflected in a greater chem-
ical potential of the solution.

Many calculations have been done based on a statisti-
cal mechanics model for liquids [5,7], the so-called
“scaled particle theory” [8]. This theory has been
developed to analyze a hard sphere model of liquids,
which has a natural counterpart in a lattice model. To
consider some features of this lattice model is the aim of
the present paper.

Here, we employ a simple two-dimensional (2D) lattice
model to investigate the cavity size distribution for ar-
rangements of linear n-mers, with n =1-10. Only ex-
cluded volume effects are considered, which means that
the n-mers are impenetrable and immobile, and geometri-
cal restriction is the only source of interaction among
them.

We consider a square lattice of L XL sites in which
each site may be either empty or occupied by a monomer
belonging to a linear polymer of size n. We use periodic
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boundary conditions. The density p is defined as the frac-
tion of occupied sites. For n =1 the sites are occupied
randomly. For n>1 polymers correspond to random
self-avoiding walks: we choose a random site that will
correspond to one end of the polymer; then we choose
(randomly) an empty first neighbor of the last chosen
monomer. If the polymer is not complete and all first
neighbors of the last chosen monomer are full, then this
incomplete polymer is discarded. Figures 1(a) and 1(b)
show typical configurations for » =1 and 10, respective-
ly.

We define a cavity as a cluster of empty sites that can
be reached by nearest neighbor steps from one site to
another. As we will see, larger cavities are more prob-
ably found for increasing values of n. Let p,, be the
probability that a given empty site belongs to a cavity of
size i when the lattice is filled by polymers of size n. The
average cavity size for a lattice filled with polymers of
size n, S,,, is defined as [9,10]

0

Sn= 2 ipi,n .

i=1

For high densities (0.7 Sp =< 1) the cavity size distribu-
tion is not significantly dependent on the dimensions of
the lattice, since now only finite cavities appear with high
probability. Of course, one should take n <<L XL to
average among representative configurations of polymer
arrangements. Size distributions were obtained by
averaging over 500 configurations for each different con-
dition. The average cavity size S (from here on we omit
the subscript ») is almost independent of lattice size if the
density p is much greater than p,. For p=0.7 and
1=n =10 a limit value is reached for L ~40 within the
5% error range. For higher densities, this dependence on
L is expected to be even smaller. Furthermore, in this
range of densities (p>0.7), the fraction of one-site cavi-
ties (p; ,) is independent of the lattice size for L = 10.

Cavity size distributions for » =1 (i.e., p;; vs i) and
different values of p are presented in Fig. 2(a). In the case
of n =1 the size distribution may be obtained analytical-
ly. This is basically the well-known lattice animals and
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perimeter polynomials calculation [11-13]. The first
equations for p,, are given in Table I. Values from
simulations coincide with analytical values for p; ; within
the standard deviation of the simulation values as shown
in Fig. 2(a). It should be noted that the analytical calcu-
lation of p; , for n =2 is related to the so-called complete
dimer problem [14—16] which is still an open hard prob-

lem. This should also be the case for n > 2.

Figure 2(b) shows size distributions for » =10 and the
same values of p as in Fig. 2(a), for comparison. It is al-
ready clear that with greater values of n the probability

of finding larger cavities increases.
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FIG. 1. Typical configurations of polymers with length (a)
n =1 and (b) n =10 in a 40X 40 lattice with periodic boundary
conditions. In both cases the polymer density is p=0.8.
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FIG. 2. Cavity size distributions for (a) monomers (n =1);
open circles show analytical values (from Table I); (b) polymers
of length n =10. In all cases data correspond to the average
and error bars to the standard deviation of the values corre-
sponding to 500 different configurations in 40X40 lattices.
Densities are indicated in the figure.
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TABLE I. Probability p,, that a given empty site belongs to
a cavity of size i when the lattice is filled by monomers, with
density p.

P11 =P4

P2,1=4P6(1“P)

P31 =6p"(1—p) 2+p)

Pa1=80%(1—p) (3 +4p+p)

Ps,1 =10p%(1—p)* (1 +10p+14p?+6p>+p*)
Pe1=12p°(1—p)*(2+27p+40p?+30p°+ 8p*+p°)
P1.1=14p"°(1—p)%(11+68p+126p>+ 114p*+50p* + 10p° +p°)

By representing p, , as a function of 1/n for different
values of p, straight lines can be fitted to the data corre-
sponding to n >2 (inset of Fig. 3). From these fits we
may conclude that in the limit n — c the probability of
finding one-site cavities tends to a finite value p, .,, which
increases with increasing density. In Fig. 3, we show
P1,» VS p and, for comparison, also p,, vs p for
n=1,2,10.

Below critical values of the occupied site density p.
there is site percolation of unoccupied sites, which means
that in the thermodynamic limit L — o there appear
cavities of infinite size. For p <p, and in the neighbor-
hood of p,, the calculation of the cavity size distribution
is greatly affected by the lattice size, and one should
correct for the finite size effects to calculate any relevant
feature of the model.

In order to investigate percolation of the empty sites
close to the critical density p., we studied the behavior of
the average cavity size S. To obtain estimates of p,,
curve fittings were carried out using the following expres-
sion for dS /dp [9,17]:

4 kel —kalp—p. LI
where p.(L) is the critical size as a function of L, and k,
and k, are not dependent on p.
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FIG. 3. Probability of finding one-site cavities p, , vs poly-
mer density p, for n =1 (0), 2 (A), 10 (©), and n — « (@). Dot-
ted lines are guides to the eyes. The full line corresponds to the
function p, ; =p*. Inset: p,, as a function of 1/n for different
values of p. Full lines correspond to linear fittings.
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FIG. 4. Dependence of p.(L) on L' for some values of n.
The slope is related to exponent v. Inset: critical density p,
[pc=p ()] vs n. The dotted line is a guide to the eyes.

Figure 4 shows p (L) as a function of the lattice size L.
For n =1 we obtained p, =0.407+0.005. The best esti-
mate for this density is p, =0.407 254 0+0.000 000 5 [18].
We can also observe (see inset of Fig. 4) that the critical
density seems to be slightly dependent on n.

The correlation length £ is related to the critical densi-
ty through

Ex(p—p.) 7.

When p=p (L), the correlation length £ reaches the
linear dimension L of the lattice. In that case we have
[17]

pe(L)=p <L~

The value of v for n =1 is supposed to be 4 according
to conformal invariance calculations [19]. Our results in-
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FIG. 5. Finite size scaling plot for n =1. The scaling is quite
good, resulting in a value of ¥ =2.24, compared to the possibly
exact value y = %. Inset: values of ¥ as a function of n for the
empty site percolation. Again, the dotted line is a guide to the
eyes.
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dicate that for increasing values of »n there is no
significant departure from the critical exponent v corre-
sponding to n =1.

According to scaling hypotheses, the average cavity
size is related to the density through [9,10]

Se(p—p)77 .

To evaluate y we must take into account finite size
effects. According to finite size scaling theory [9,20,21]
we should obtain a straight line fitting for the log-log plot
of

(S/LY")X[p/pAL)—1]L'Y" .

Figure 5 shows the finite size scaling plots for n =1. In
the inset of Fig. 5 we show the values of ¥ obtained for
different n. We observe a significant increase of this value
for greater values of n. The increase of ¥ seems to be re-
lated to the increase in average cavity size for greater
values of n.

Larger cavities are found with higher probabilities as n
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increases. Thus assemblies of larger polymers are more
able to accommodate a large structure than a water lat-
tice is. This may be at least one of the ingredients re-
sponsible for hydrophobic solubilities. This agrees with
the finding that the solubilities of inert gases are greater
in organic solvents than in water [4]. Even when the
fractional free volume is greater for water, i.e., if the or-
ganic solvent is denser than liquid water, the free volume
is distributed in smaller packets in the latter case. Our
simple model considering only geometric features with no
reference to thermal effects allows an understanding of a
general aspect of the hydrophobic effect.

The results obtained here for percolation of empty sites
indicate no significant change of the critical density p,
nor correlation length exponent v as n increases. On the
other hand, the critical exponent for average cavity size y
shows a significant increase with n. The relevance of per-
colation problems is well known. Nevertheless, the prob-
lems we treat here have not appeared in the literature be-
fore, as far as we know. It seems that a new class of per-
colation problems has been observed.
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